OR Foundation
  • About
    • Oral Reconstruction Foundation
      • Purpose and Mission
      • Foundation Board
      • Scientific Working Group
      • Education Working Group
      • History
      • Career
      • News
  • Granting
    • Requirements
    • Application
  • Publications
    • Grant Publications
    • Consensus Publications
  • Awards
    • Research Award
      • Awards 2018/2019
      • Award 2016/2017
      • Award 2014/2015
      • Award 2012/2013
      • Award 2010/2011
      • Award 2008/2009
    • Poster Competition
      • Competition 2018
      • Competition 2016
      • Competition 2014
      • Competition 2012
  • Education
    • International Symposia
    • Global Symposia
    • National Symposia
    • Curriculum
    • Education Courses
    • Webinars
  • Contact
Select Page

Enhanced Wound Healing Potential of Primary Human Oral Fibroblasts and Periodontal Ligament Cells Cultured on Four Different Porcine-Derived Collagen Matrices


Lin Z, Nica C, Sculean A, Asparuhova MB.

Materials (Basel). 2020;13(17):E3819; doi:10.3390/ma13173819. (Grant ORF11803)

Abstract

Xenogenic collagen-based matrices represent an alternative to subepithelial palatal connective tissue autografts in periodontal and peri-implant soft tissue reconstructions. In the present study, we aimed to investigate the migratory, adhesive, proliferative, and wound-healing potential of primary human oral fibroblasts (hOF) and periodontal ligament cells (hPDL) in response to four commercially available collagen matrices. Non-crosslinked collagen matrix (NCM), crosslinked collagen matrix (CCM), dried acellular dermal matrix (DADM), and hydrated acellular dermal matrix (HADM) were all able to significantly enhance the ability of hPDL and hOF cells to directionally migrate toward the matrices as well as to efficiently repopulate an artificially generated wound gap covered by the matrices. Compared to NCM and DADM, CCM and HADM triggered stronger migratory response. Cells grown on CCM and HADM demonstrated significantly higher proliferative rates compared to cells grown on cell culture plastic, NCM, or DADM. The pro-proliferative effect of the matrices was supported by expression analysis of proliferative markers regulating cell cycle progression. Upregulated expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in hPDL and hOF cells cultured on each of the four matrices. This may be considered as a prerequisite for good adhesive properties of the four scaffolds ensuring proper cell-matrix and cell-cell interactions. Upregulated expression of genes encoding TGF-β1 and EGF growth factors as well as MMPs in cells grown on each of the four matrices provided support for their pro-proliferative and pro-migratory abilities. The expression of genes encoding the angiogenic factors FGF-2 and VEGF-A was dramatically increased in cells grown on DADM and HADM only, suggesting a good basis for accelerated vascularization of the latter. Altogether, our results support favorable influence of the investigated collagen matrices on the recruitment, attachment, and growth of cell types implicated in oral soft tissue regeneration. Among the four matrices, HADM has consistently exhibited stronger positive effects on the oral cellular behavior. Our data provide solid basis for future investigations on the clinical application of the collagen-based matrices in surgical periodontal therapy.

SOURCE

Latest Research Award Winners

Dr. Yifan Zhang
Quantitative Clinical Adjustment Analysis of Posterior Single Implant Crown in a Chairside Digital Workflow: A Randomized Controlled Trial. Clin Oral Impl Res. 2019;30:1059-1066

Read more

Dr. Hyun-Chang Lim
Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects — A histologic and radiographic preclinical study. Clin Oral Impl Res. 2019;30:660-9

Read more

Dr. Lorenzo Tavelli
Acellular dermal matrix and coronally advanced flap or tunnel technique in the treatment of multiple adjacent gingival recessions. A 12-year follow-up from a randomized clinical trial. J Clin Periodontol. 2019;46:937-48

Read more

Dr. Lukasz Witek
Repair of critical-sized long bone defects using dipyridamole-augmented 3D-printed bioactive ceramic scaffolds. J Orthop Res. 2019;37:2499-507

Read more

Oral Reconstruction Foundation


Margarethenstrasse 38 

4053 Basel
Switzerland

Phone: +41 61 565 41 51
Email: info@orfoundation.org

OR Foundation – U.S. Section

2300 Riverchase Center
Birmingham, AL 35244
USA
Phone: +1 205 986 7989
Email: info.us@orfoundation.org

Newsletter

  • Facebook
  • Twitter
  • RSS

© Oral Reconstruction Foundation 2023 | Imprint | Disclaimer | Privacy | Sitemap | Professional websites Basel