OR Foundation
  • About
    • Oral Reconstruction Foundation
      • Purpose and Mission
      • Foundation Board
      • Scientific Working Group
      • Education Working Group
      • History
      • Career
      • News
  • Granting
    • Requirements
    • Application
  • Publications
    • Grant Publications
    • Consensus Publications
  • Awards
    • Research Award
      • Awards 2018/2019
      • Award 2016/2017
      • Award 2014/2015
      • Award 2012/2013
      • Award 2010/2011
      • Award 2008/2009
    • Poster Competition
      • Competition 2018
      • Competition 2016
      • Competition 2014
      • Competition 2012
  • Education
    • International Symposia
    • Global Symposia
    • National Symposia
    • Curriculum
    • Education Courses
    • Webinars
  • Contact
Select Page

Photofunctionalization and non-thermal plasma activation of titanium surfaces.


Henningsen A, Smeets R, Hartjen P, Heinrich O, Heuberger R, Heiland M, Precht C, Cacaci C

Clin Oral Invest 2017 DOI 10.1007/s00784-017-2186-z (Grant CF11501)

Abstract

Objective:

The aim of this study was to compare UV light and non-thermal plasma (NTP) treatment regarding the improvement of physical material characteristics and cell reaction on titanium surfaces in vitro after short-term functionalization.

Material and methods:

Moderately rough (Ra 1.8-2.0 μm) sandblasted and acid-etched titanium disks were treated by UV light (0.05 mW/cm2 at λ = 360 nm and 2 mW/cm2 at λ = 250 nm) or by NTP (24 W, -0.5 mbar) of argon or oxygen for 12 min each. Surface structure was investigated by scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy (XPS). Hydrophilicity was assessed by dynamic contact angle measurement. Cell attachment, viability, cell proliferation and cytotoxicity were assessed in vitro using murine osteoblast-like cells.

Results:

UV irradiation or NTP treatment of titanium surfaces did not alter the surface structure. XPS analysis revealed a significantly increased oxidation of the surface and a decrease of carbon after the use of either method. NTP and UV light led to a significant better cell attachment of murine osteoblasts; significantly more osteoblasts grew on the treated surfaces at each time point (p < 0.001).

Conclusion:

UV light as well as NTP modified the surface of titanium and significantly improved the conditions for murine osteoblast cells in vitro. However, results indicate a slight advantage for NTP of argon and oxygen in a short time interval of surface functionalization compared to UV.

Clinical relevance:

UV light and NTP are able to improve surface conditions of dental implants made of titanium.

SOURCE

Latest Research Award Winners

Dr. Yifan Zhang
Quantitative Clinical Adjustment Analysis of Posterior Single Implant Crown in a Chairside Digital Workflow: A Randomized Controlled Trial. Clin Oral Impl Res. 2019;30:1059-1066

Read more

Dr. Hyun-Chang Lim
Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects — A histologic and radiographic preclinical study. Clin Oral Impl Res. 2019;30:660-9

Read more

Dr. Lorenzo Tavelli
Acellular dermal matrix and coronally advanced flap or tunnel technique in the treatment of multiple adjacent gingival recessions. A 12-year follow-up from a randomized clinical trial. J Clin Periodontol. 2019;46:937-48

Read more

Dr. Lukasz Witek
Repair of critical-sized long bone defects using dipyridamole-augmented 3D-printed bioactive ceramic scaffolds. J Orthop Res. 2019;37:2499-507

Read more

Oral Reconstruction Foundation


Margarethenstrasse 38 

4053 Basel
Switzerland

Phone: +41 61 565 41 51
Email: info@orfoundation.org

OR Foundation – U.S. Section

2300 Riverchase Center
Birmingham, AL 35244
USA
Phone: +1 205 986 7989
Email: info.us@orfoundation.org

Newsletter

  • Facebook
  • Twitter
  • RSS

© Oral Reconstruction Foundation 2023 | Imprint | Disclaimer | Privacy | Sitemap | Professional websites Basel