OR Foundation
  • About
    • Oral Reconstruction Foundation
      • Purpose and Mission
      • Foundation Board
      • Scientific Working Group
      • Education Working Group
      • History
      • Career
      • News
  • Granting
    • Requirements
    • Application
  • Publications
    • Grant Publications
    • Consensus Publications
  • Awards
    • Research Award
      • Awards 2018/2019
      • Award 2016/2017
      • Award 2014/2015
      • Award 2012/2013
      • Award 2010/2011
      • Award 2008/2009
    • Poster Competition
      • Competition 2018
      • Competition 2016
      • Competition 2014
      • Competition 2012
  • Education
    • International Symposia
    • Global Symposia
    • National Symposia
    • Curriculum
    • Education Courses
    • Webinars
  • Contact
Select Page

Sinus floor elevation and augmentation using synthetic nanocrystalline and nanoporous hydroxyapatitie bone substitute materials: preliminary histologic results.


Belouka S-M, Strietzel FP

Int J Maxillofac Implants 2016;31:1281-91 (Grant CF40804)

Abstract

Purpose:

To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation.

Material and methods:

Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically.

Results:

All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized.

Conclusion:

All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized.

SOURCE

Latest Research Award Winners

Dr. Yifan Zhang
Quantitative Clinical Adjustment Analysis of Posterior Single Implant Crown in a Chairside Digital Workflow: A Randomized Controlled Trial. Clin Oral Impl Res. 2019;30:1059-1066

Read more

Dr. Hyun-Chang Lim
Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects — A histologic and radiographic preclinical study. Clin Oral Impl Res. 2019;30:660-9

Read more

Dr. Lorenzo Tavelli
Acellular dermal matrix and coronally advanced flap or tunnel technique in the treatment of multiple adjacent gingival recessions. A 12-year follow-up from a randomized clinical trial. J Clin Periodontol. 2019;46:937-48

Read more

Dr. Lukasz Witek
Repair of critical-sized long bone defects using dipyridamole-augmented 3D-printed bioactive ceramic scaffolds. J Orthop Res. 2019;37:2499-507

Read more

Oral Reconstruction Foundation


Margarethenstrasse 38 

4053 Basel
Switzerland

Phone: +41 61 565 41 51
Email: info@orfoundation.org

OR Foundation – U.S. Section

2300 Riverchase Center
Birmingham, AL 35244
USA
Phone: +1 205 986 7989
Email: info.us@orfoundation.org

Newsletter

  • Facebook
  • Twitter
  • RSS

© Oral Reconstruction Foundation 2023 | Imprint | Disclaimer | Privacy | Sitemap | Professional websites Basel